# **REARRANGEMENTS OF SUBSTITUTED 1-PHENYLALLYL ALCOHOLS**

## R.G.SALIH and M.Y.SHANDALA

262

Department of Chemistry, College of Science, University of Mosul, Iraq

Received April 25th, 1975

The rearrangement of X-substituted 1-phenylallyl alcohols (X = H, p-CH<sub>3</sub>, o-CH<sub>3</sub>, p-CH<sub>3</sub>O, m-CH<sub>3</sub>O, o-CH<sub>3</sub>O, o-F, p-F, p-Cl, m-Cl, o-Cl, p-Br, and m-Br) to the corresponding 3-phenylallyl alcohols has been studied. The reactions are followed spectroscopically in aqueous dioxane and aqueous ethanol in the presence of hydrochloric acid as a catalyst at various acid concentrations and compositions of media. The correlations of rates with substituents are investigated.

The acid catalysed rearrangements of allylic alcohols have been studied in many systems<sup>1-3</sup>. The work of Burton and Ingold<sup>4</sup> on the rearrangements of 1-phenylallyl alcohols was of a qualitative character. Braude and coworkers<sup>5-7</sup> carried out a detailed kinetic investigation of acid catalysed rearrangements of allylic alcohols.

In connection with anionotropic rearrangements, three mechanisms (analogous to  $S_N 1$ ,  $S_N 2$ , and  $S_N i$ ) were originally proposed. The carbonium ion mechanism was postulated<sup>4</sup>. Catchpole and Hughes<sup>8</sup> concluded that the rearrangement occurred by  $S_N 1$  mechanism. The intramolecular mechanism was put forward by Kenyon and his coworkers<sup>9</sup>. Braude reformulated<sup>1</sup> the three proposed mechanisms. He suggested that the entity undergoing rearrangement is not the neutral molecule but the oxonium ion formed by the reversible addition of a proton to the  $\alpha$ -carbon atom as shown in *I*, *II* and *III*.



Braude<sup>1</sup> regarded mechanism *III* as predominant in non isomeric systems and intermolecular isomeric anionotropy while the rearrangements in dilute solutions in inert

solvents take place by mechanism II. In aqueous solvents, the intermolecular and intramolecular reactions proceed side by side. Goering and coworkers<sup>2,3</sup> proposed that in aqueous solvents the carbonium ion process I and the  $S_N2$  process are likely mechanisms for the rearrangements, and of these two the carbonium ion mechanism is more likely. Bunton and Poker<sup>10</sup> suggested that the rearrangements entirely occur via carbonium ion mechanism.

In order to gain more information about the mechanism of rearrangement of substituted 1-phenylallyl alcohols to the corresponding 3-phenylallyl alcohols, a detailed kinetic study has been performed in the present work. Hammett and Taft's equations are used to correlate the rates of reactions.

## EXPERIMENTAL

*Kinetics:* The reactions were followed by observing the increase in the absorption intensity of the medium at  $\lambda_{max}$  of the resulting 3-phenylallyl alcohol using SP 800 spectrophotometer connected to an automatic SP 825 program controller. The temperature has been controlled by water cir-

#### TABLE I

|                     |                                  | 1-Ison | ner <sup>a</sup> |                              |                        | 3-       | Isomer     |                |
|---------------------|----------------------------------|--------|------------------|------------------------------|------------------------|----------|------------|----------------|
| Substituent         | $\lambda_{\max}$ nm <sup>b</sup> | З      | b.p.<br>°C/Torr  | n <sub>D</sub> <sup>25</sup> | λ <sub>max</sub><br>nm | m.p., C° | ε, kinetic | ε, preparative |
| н                   | 252                              | 550    | 105-107/9.5      | 1.5386                       | 251                    | 33       | 17,200     | 18,100         |
| o-CH <sub>3</sub>   | 252                              | 750    | 120 - 122/10     | 1.5400                       | 252                    | 41 - 42  | 15,460     | 17,000         |
| m-CH <sub>3</sub>   | 256                              | 510    | 115-117/11       | 1.5370                       | 254.5                  | с        | 16,400     | 17,300         |
| p-CH <sub>3</sub>   | 257                              | 800    | 120 - 122/10     | 1.5370                       | 254.5                  | 51 - 52  | 19,500     | 20,300         |
| o-CH <sub>3</sub> O | 256                              | 990    | 84-86/0.2        | 1.5153                       | 251                    | 72 - 73  | 17,300     | 19,000         |
| m-CH <sub>3</sub> O | 259                              | 750    | 115-118/8        | 1.5449                       | 256                    | 70-71    | 19,150     | 20,800         |
| p-CH <sub>3</sub> O | 262                              | 1 700  | 9698/04          | 1.5470                       | 261                    | 80       | 21,400     | 22,250         |
| <i>o</i> -F         | 251                              | 650    | 82 - 84/3        | 1.5137                       | 249                    | 54.55    | 15,560     | 17,100         |
| m-F                 | 251                              | 500    | 84-85/10         | 1.5165                       | 250                    | 52       | 15,580     | 17,300         |
| p-F                 | 252                              | 700    | 100 - 102/5      | 1.5148                       | 250                    | 57       | 16,800     | 17,900 .       |
| 0-Cl                | 253                              | 980    | 100 - 103/10     | 1.5609                       | 250                    | d        | 16,650     | 18,100         |
| m-Cl                | 255.5                            | 900    | 110 - 112/5      | 1.5569                       | 255                    | 51-52    | 17,650     | 19,400         |
| p-Cl                | 258                              | 850    | 125-128/12       | 1.5518                       | 256                    | 57       | 19,800     | 22,000         |
| <i>m</i> -Br        | 260                              | 950    | 85-86/0.1        | 1.5795                       | 254                    | 60-61    | 17,650     | 19,650         |
| <i>p</i> -Br        | 259                              | 980    | 90-91/0·2        | 1.5712                       | 258                    | 67-68    | 21,600     | 24,000         |

The Physical Constants for 1- and 3-Phenylallyl Alcohols

<sup>a</sup> Contains about 3% of unidentified materials and some 3-phenylallyl alcohol; <sup>b</sup> in ethanol as <sup>a</sup> solvent; <sup>c</sup> liquid b, p,  $96-97^{\circ}C/0.2$  Torr.; <sup>d</sup> liquid b, p,  $94-95^{\circ}C/0.3$  Torr.

## TABLE II

Rate Constants  $(min^{-1})$  of Rearrangement of Substituted 1-Phenylallyl Alcohols in Aqueous Dioxane and Aqueous Ethanol in the Presence of 0.05M-HCl. (conc. of alcohol c. 9.10<sup>-5</sup>M).

|   | Substituent                 | °C  | % Ethanol       | $10^3 K_{\mathrm{T}}^{a}$ | % Dioxane | $10^3 K_{\mathrm{T}}$ |   |
|---|-----------------------------|-----|-----------------|---------------------------|-----------|-----------------------|---|
|   | н                           | 50  | 50              | 4.06                      | 50        | 5.25                  |   |
|   |                             | 50  | 30              | 13.24                     | 40        | 8.74                  |   |
|   |                             | 50  | 20              | 27.30                     | 30        | 14.95                 |   |
|   | o-CH2                       | 50  | 50              | 10.33                     | 50        | 13.32                 | ÷ |
|   | 3                           | 50  | 40              | 19.53                     | 40        | 21.88                 |   |
|   |                             | 50  | 30              | 41.51                     | 30        | 36.82                 |   |
|   |                             | 40  | 30              | 15.67                     | 40        | 7.18                  |   |
|   |                             | 35  | 30              | 9.66                      | 40        | 12·26 <sup>b</sup>    |   |
|   | m-CH                        | 50  | 50              | 7.46                      | 50        | 4.58                  |   |
|   |                             | 50  | 40              | 14.88                     | 50        | 6.84                  |   |
|   | •                           | 50  | 30              | 28.15                     | 40        | 11.48                 |   |
|   |                             | 45  | 30              | 16.60                     | 40        | 7.73                  |   |
|   |                             | 40  | 30              | 10.11                     | 40        | 4.34                  |   |
|   |                             | 50  |                 |                           | 30        | 18.88                 |   |
|   | n-CH.                       | 50  | 70              | 14.42                     | 60        | 33.11                 |   |
|   | p eng                       | 50  | 60              | 21.32                     | 50        | 52.00                 |   |
|   |                             | 50  | 50              | 35.01                     | 40        | 79.00                 |   |
|   |                             | 50  | 30              | 102.00                    | 40        | 46.38 <sup>b</sup>    |   |
|   | •                           | 40  | 30              | 43.60                     | 40        | 28.82                 |   |
|   |                             | 35  | 30              | 27.46                     | 30        | 120.00 <sup>c</sup>   |   |
|   | o-CH <sub>2</sub> O         | 50  | 60              | 58.70                     | 60        | 104.8                 |   |
|   | v enge                      | 50  | 50              | 96.26                     | 50        | 138.0                 |   |
| • |                             | 50  | 40              | 158.5                     | 40        | 195.5                 |   |
|   |                             | 45  | 40              | 94.20                     | 40        | 117.1                 |   |
|   |                             | 40  | 40              | 62.67                     | 40        | 73.2                  |   |
|   |                             | 35  | 40              | 38.40                     | 40        | $45 \cdot 8^d$        |   |
|   |                             | 50  | 30              | 285.3                     | 30        | 305.5                 |   |
|   | <i>m</i> -CH <sub>2</sub> O | 50  | 40              | 3.72                      | 40        | 3.92                  |   |
|   |                             | 50  | 30              | 6.92                      | 30        | 7.22                  |   |
|   |                             | 50  | 20              | 11.00                     | 20        | 11.80                 |   |
|   |                             | -50 | 20              | 22·81 <sup>e</sup>        | 20        | 2·36 <sup>e</sup>     |   |
|   |                             | 45  | 20              | 13.80 <sup>e</sup>        | 20        | 12·19 <sup>e</sup>    |   |
| • |                             | 40  | 20              | 7·41 <sup>e</sup>         | 20        | 6·38 <sup>e</sup>     |   |
|   | p-CH <sub>2</sub> O         | 50  | 80              | 41.93 <sup>f</sup>        | 80        | 71·20 <sup>f</sup>    |   |
|   | 1 3 -                       | 45  | 80              | 29.15 <sup>f</sup>        | 80        | 44.80 <sup>f</sup>    |   |
|   |                             | 40  | 80              | 19.50 <sup>f</sup>        | 80        | 27·96 <sup>f</sup>    |   |
|   |                             | 45  | 75              | 31·20 <sup>f</sup>        | 75        | 46.15 <sup>f</sup>    |   |
|   |                             | 45  | 70 <sup>1</sup> | 35·76 <sup>5</sup>        | 70        | 51.08 <sup>f</sup>    |   |
|   |                             | 50  | 30              | 1 867·9 <sup>g</sup>      | 30        | 190·10 <sup>g</sup>   |   |
|   |                             |     |                 |                           |           |                       |   |

.

Rearrangements of Substituted 1-Phenylallyl Alcohols

# TABLE II

(Continued)

| Substituent  | °C | % Ethanol       | $10^3 K_{\rm T}$ | % Dioxane       | $10^{3}K_{T}$    |   |
|--------------|----|-----------------|------------------|-----------------|------------------|---|
| <i>o</i> -F  | 50 | 30              | 0.678            | 30              | 0.611            |   |
|              | 50 | 25              | 0.765            | 25              | 0.868            |   |
|              | 50 | 20              | 1.05             | 20              | 1.02             |   |
|              | 55 | 15              | 2.69             | 15              | 2.18             |   |
| • *          | 45 | 15              | 0.733            | 15              | 0.666            |   |
| <i>m</i> -F  | 50 | 30 <sup>·</sup> | 0.873            | 30              | 0.944            |   |
|              | 50 | 25              | 1.09             | 25              | 1.18             |   |
|              | 50 | 20              | 1.54             | 20              | 1.45             |   |
|              | 50 | 15              | 2.05             | 15              | 1.77             |   |
|              | 55 | 15              | 3.24             | 15              | 3.39             |   |
|              | 45 | 15              | 1.06             | 15              | 1.12             |   |
|              | 50 | 50              | 3.92             | 50              | 3.86             |   |
|              | 50 | 40              | 7.36             | 40              | 7.15             |   |
|              | 50 | 30              | 14.15            | 305             | 12.86            |   |
|              | 50 | 15              | 39.31            | 1               | 33.20            |   |
|              | 55 | 15              | 66 <b>·20</b>    | 15 <sup>·</sup> | 57.09            |   |
| ÷.           | 45 | 15              | 23.20            | 15              | 19.28            |   |
|              | 50 | 30              | 0.681            | 30              | 0.578            |   |
|              | 50 | 25              | 0.872            | 20              | 0.989            |   |
|              | 50 | 20              | 1.25             | 15              | 1.36             |   |
|              | 50 | 15              | 1.74             | 15              | 2·3 <sup>h</sup> |   |
| · ·          | 55 | 15              | 2.96             | 15              | <b>0</b> ∙692    |   |
|              | 45 | 15              | 0.866            | _               | _                |   |
|              | 50 | 30              | 0.568            | 30              | 0.485            |   |
|              | 50 | 20              | 1.08             | 20              | 0.830            |   |
|              | 50 | 15              | 1.38             | 15              | 1.11             |   |
|              | 55 | 15              | 2.60             | 15              | 2.02             |   |
|              | 45 | 15              | 0.755            | 15              | 0.582            |   |
| p-Cl         | 50 | 30              | 4.44             | 30              | 3.92             |   |
| P            | 50 | 20              | 8.60             | 20              | 7.01             |   |
|              | 50 | 15              | 11.88            | 15              | 9.28             |   |
|              | 55 | 15              | 19-28            | 15              | 14.79            | 1 |
|              | 45 | 15              | 7.24             | 15              | 5.50             |   |
| m-Br         | 50 | 30              | 0.778            | 30              | 0.542            |   |
|              | 50 | 25              | 0.910            | 25              | 0.742            |   |
|              | 50 | 20              | 1.24             | 20              | 0.890            |   |
|              | 50 | 15              | 1.46             | 15              | 1.18             |   |
|              | 55 | 15              | 2.75             | 15              | 2.27             |   |
|              | 45 | 15              | 0.822            | 15              | 0.668            |   |
| <i>p</i> -Br | 50 | 80              | 3.59             | 30              | 2.94             |   |

| 266                     |    |           |                  |           | Salih, Shandala                                           |
|-------------------------|----|-----------|------------------|-----------|-----------------------------------------------------------|
| Table II<br>(Continued) |    |           |                  |           | Salih, Shandala<br>ne $10^3 K_T$<br>5.46<br>7.53<br>13.34 |
| Substituent             | °C | % Ethanol | $10^3 K_{\rm T}$ | % Dioxane | $10^3 K_{\rm T}$                                          |
|                         | 50 | 20        | 6.99             | 20        | 5.46                                                      |
|                         | 50 | 15        | 8.67             | 15        | 7.53                                                      |
|                         | 55 | 15        | 15.03            | 15        | 13.34                                                     |
|                         | 45 | 15        | 5.01             | 15        | 4.47                                                      |

<sup>a</sup> Mean values of several runs; <sup>b</sup> at 45°C, in dioxane; <sup>c</sup> at 50°C in dioxane; <sup>d</sup> at 35°C in dioxane; <sup>e</sup> conc. of HCl 0.02M; <sup>f</sup> conc. of HCl 0.01M; <sup>g</sup> by extrapolation; <sup>h</sup> at 55°C in dioxane.

culating inside the cell compartment using U-10 Ultrathermostat. This method is similar to that adopted by Braude<sup>11</sup>. First order rate constants were calculated from

$$k = (2 \cdot 3/t) \log (E_{\infty} - E_0) / (E_{\infty} - E_t), \qquad (1)$$

where  $E_t$  and  $E_{\infty}$  are the optical densities after *t* minutes and at the end of the reaction, respectively. The % of rearrangement was calculated from the ratio of the molecular extinction coefficient ( $\varepsilon$ ) at  $\lambda_{max}$  obtained at the end of a kinetic run to that of the corresponding 3-phenylallyl alcohol.

*Materials*: Substituted 1-phenylallyl alcohols were prepared by Grignard condensation of the appropriate aryl halides with acrolein. Substituted 3-phenylallyl alcohols were prepared by rearrangements of the corresponding 1-phenylallyl alcohols in 60% aqueous acetone in the



FIG. 1

Plot of log  $k/C_A$  for meta and para Substituted Alcohols in 30% Aqueous Dioxane (a) and 30% Aqueous Ethanol (b) in the Presence of 0.05M-HCl versus log K

k, Rate constant of rearrangement of substituted 1-phenylallyl alcohol, K, dissociation constant of the corresponding benzoic acid in water at  $25^{\circ}$ C.

presence of 0.2M-HCl. The products were isolated by distillation or crystallization from benzene--light petroleum. The physical constants for the conjugated and nonconjugated alcohols are summarized in Table I.

Solvents: Dioxan was refluxed over sodium for 12 hours and fractionated. Ethanol (B.D.H.) was used after distillation. Distilled water was boiled over potassium permanganate and redistilled.

## **RESULTS AND DISCUSSION**

In order to gain more information on the mechanism of rearrangement of 1-phenylallyl alcohol to the corresponding 3-phenylallyl alcohol, the rearrangements of substituted 1-phenylallyl alcohols were carried out in aqueous dioxane and aqueous

### TABLE III

Entropy and Enthalpy of Activation of Rearrangement of Substituted 1-Phenylallyl Alcohols in the Presence of 0.05M-HCl in Aqueous Organic Solvents

| Substituent                      | % Solvent | $\Delta S^{\pm}$ , e.u. <sup><i>a</i></sup> | $\Delta H^{\pm}$ , Kcal/mol <sup>a</sup> |  |
|----------------------------------|-----------|---------------------------------------------|------------------------------------------|--|
|                                  | Etha      | anol                                        | •                                        |  |
| o-CH <sub>3</sub>                | 30        |                                             | 19.70                                    |  |
| m-CH <sub>3</sub> <sup>b</sup>   | 30        | -1.22                                       | 21.26                                    |  |
| p-CH <sub>3</sub>                | 30        | -3.76                                       | 22.26                                    |  |
| o-CH <sub>3</sub> O              | 40        | -3.48                                       | 19.90                                    |  |
| m-CH <sub>3</sub> O              | 20        | +1.12                                       | 23.19                                    |  |
| p-CH <sub>3</sub> O <sup>c</sup> | 80        | -6.19                                       | 15.90                                    |  |
| <i>o</i> -F                      | 15        | +1.53                                       | 27.20                                    |  |
| <i>m</i> -F                      | 15        | +2.14                                       | 23.4                                     |  |
| p-F                              | 15        | -2.61                                       | 22.06                                    |  |
| o-Cl                             | 15        | +4.39                                       | 25.77                                    |  |
| •                                | Dioz      | ane                                         |                                          |  |
| o-CH3                            | 40        | -0.60                                       | 24.99                                    |  |
| m-CH <sub>3</sub>                | 40        | -2.60                                       | 21.43                                    |  |
| p-CH <sub>3</sub>                | 40        | -0.95                                       | 20.95                                    |  |
| o-OCH3                           | 40        | -1.22                                       | 19.78                                    |  |
| m-OCH <sub>3</sub>               | 20        | +3.75                                       | 25.89                                    |  |
| p-OCH <sub>3</sub>               | 80        | -1.88                                       | 19.51                                    |  |
| <i>o</i> -F                      | 15        | +1.75                                       | 24.85                                    |  |
| <i>m</i> -F                      | 15        | +1.52                                       | 23.36                                    |  |
| <i>p</i> -F                      | 15        | -0.67                                       | 22.83                                    |  |
| o-Cl                             | 15        | +4.32                                       | 25.20                                    |  |

<sup>a</sup> The average at three different temperatures; b 0.02m-HCl; <sup>c</sup> 0.01m-HCl.

ethanol in the presence of 0.05M-HCl as shown in Table II. From the data recorded it can be seen that in aqueous dioxane the rate of isomerization increases in the sequence m-Cl < m-Br < o-Cl < o-F < m-F < p-Br < p-Cl < m-CH<sub>3</sub>O < p-F < H < < m-CH<sub>3</sub> < p-CH<sub>3</sub> < o-CH<sub>3</sub>O < p-CH<sub>3</sub>O, while the rate of rearrangement in aqueous ethanol increases in the sequence m-Cl < o-F < m-Br < m-F < m-F< p-Br < p-Cl < m-CH<sub>3</sub>O < H < p-F < m-CH<sub>3</sub> < o-CH<sub>3</sub>O < p-CH<sub>3</sub>O. It can be noticed that the sequence of increasing rates in both aqueous dioxane and aqueous ethanol is nearly the same. The rate constants  $(k_t)$  for each alcohol are proportional to the acid concentrations  $c_A$ . Values  $k/c_A$  are nearly constant for each alcohol in the same media and decrease with increasing organic solvent concentration up to 85%. The rate constants in media of different composition at the same concentration of HCl and constant temperature obey the equation  $\log k =$ = mD + n, where D is dielectric constant of the organic mixture<sup>12</sup>, m and n are constants. A fall in the first order rate constants is observed for the rearrangements of the alcohols in aqueous ethanol which may be due to the formation of substituted 1-phenylallyl ethers before and after rearrangement but the ether itself is less easily rearranged than the original alcohol. The rate constants at different temperatures accurately obey the Arrhenius equation. Values of  $\Delta S^{*}$  and  $\Delta H^{*}$  are listed in Table III. It is also observed from Table II that in the rearrangement of substituted 1-phenyl-



FIG. 2

Relative Rates of Rearrangements of 1-Phenylallyl Alcohols in 30% Aqueous Dioxane (a) and 30% Aqueous Ethanol (b) in the Presence of 0.05M-HCl versus  $\sigma(\bullet)$  and  $\sigma^+(\circ)$  k, Rate constant of rearrangement of meta and para substituted 1-phenylallyl alcohol,

 $k_0$ , rate constant of rearrangement of 1-phenylallyl alcohol.

### Rearrangements of Substituted 1-Phenylallyl Alcohols

allyl alcohols the highest extinction coefficient, reached in kinetic runs, is lower by some 5-10% than that of the pure 3-phenylallyl alcohol; this may be attributed to: a) Substituted 1-phenylallyl alcohols contain about 3% impurities which resulted from the acrolein used; b) The maximum absorption decreases with time after the kinetic run is finshed, in accordance with Goering and Silversmith view<sup>3</sup>. On the other hand Braude<sup>5</sup> attributed this discrepancy to the formation of stereoisomers or the establishment of equilibrium at 92-97% rearrangement. According to the above observation, if equilibrium is established, it will be at a higher percentage of rearrangement.

The plot of log  $k/c_A$  for the meta and para substituted alcohols in aqueous dioxane and aqueous ethanol (Fig. 1a and 1b) versus log K does approximate to a straight line where K is the dissociation constant of substituted benzoic acid in water at 25°C. Hammett equation<sup>13</sup>, log  $k/k_0 = \rho\sigma$ , was used to correlate the rates of meta and para substituted 1-phenylallyl alcohols. It can be seen from Fig. 2a and 2b that the relative rates of rearrangement deviate from the usual Hammett equation. A better correlation is obtained when  $\sigma^+$  is used. When the modified Hammett equation of Yukawa and Tsuno<sup>14</sup> is used, the correlation approximates to a straight line as shown in Fig. 3a and 3b:



FIG. 3

Relative Rates of Rearrangements of 1-Phenylallyl Alcohol in 30% Aqueous Dioxane (a) and 30% Aqueous Ethanol (b) versus  $\sigma + R (\sigma^+ - \sigma)$ 

 $k/k_0$ , Ratio of the rate constant of rearrangement of substituted 1-phenylallyl to the rate constant of 1-phenylallyl alcohol, R 0.396.

Collection Czechoslov, Chem. Commun. [Vol. 41] [1976]

269

$$\log k/k_0 = \rho\sigma + R(\sigma^+ - \sigma), \qquad (2)$$

where R is proportionality constant giving the contribution of the enhanced resonance effect of electron releasing substituents. The value of  $\rho = 3.7$  is neither so high in both aqueous dioxane and aqueous ethanol to suggest that the reaction proceeds *via* carbonium ion nor so low to suggest that the rearrangement proceeds *via* intermolecular mechanism. The value of  $\rho$  is in good agreement with the suggestion of Braude<sup>1</sup> that "in aqueous solvents the intra and intermolecular mechanism possibly proceed side by side", however the carbonium ion mechanism is more predominant.

The data obtained for the ortho substituted alcohols gives a reasonable fit in Taft's equation<sup>14-16</sup> log  $k/k_0 = \rho\sigma_{ortho}$ , which implies that the steric effect does not cause differences in rates within the series. No correlation could be obtained when a plot of log  $k/k_0$  against  $E_s$  was attempted; *i.e.* no correlation could be found with the equation<sup>17</sup> log  $k/k_0 = \rho E_s$ .

### REFERENCES

- 1. Braude E. A.: Quart. Rev. Chem. Soc. 4, 404 (1950).
- 2. Goering H. L., Dilgren R. E.: J. Amer. Chem. Soc. 81, 2556 (1959).
- 3. Goering H. L., Silversmith E. F.: J. Amer. Chem. Soc. 79, 348 (1957).
- 4. Burton H., Ingold C. K.: J. Chem. Soc. 1928, 904.
- 5. Braude E. A., Jones E. R. H., Stern E. S.: J. Chem. Soc. 1946, 396.
- 6. Braude E. A., Jones E. R. H., Stern E. S.: J. Chem. Soc. 1947, 1087.
- 7. Braude E. A., Stern E. S.: J. Chem. Soc. 1947, 1096.
- 8. Catchpole A. G., Hughes E. O.: J. Chem. Soc. 1948, 41.
- 9. Kenyon J., Partridge S. M., Phillips H.: J. Chem. Soc. 1941, 721.
- 10. Bunton C. A., Poker Y.: Chem. Ind. (London) 1958, 1516.
- 11. Braude E. A., Gore P. H.: J. Chem. Soc. 1951, 41.
- 12. Timmermans J.: Physico-Chemical Constants of Binary Systems, Vol. 4. Interscience, New York 1960.
- 13. Hammett L. P.: Physical Organic Chemistry, p. 355. McGraw Hill, New York 1970.
- 14. Yukawa Y., Tsuno Y.: Bull. Chem. Soc. Jap. 32, 965 (1959).
- 15. Jaffe H. H.: Chem. Rev. 53, 191 (1951).
- 16. Taft R. W.: J. Amer. Chem. Soc. 75, 4231 (1953).
- 17. Taft R. W.: J. Amer. Chem. Soc. 74, 3120 (1952).